skip to main content


Search for: All records

Creators/Authors contains: "Langston, Abigail L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Wide bedrock valleys and their genetic descendants, strath terraces, can serve as morphological records of past climate that reflect river discharge and sediment load during periods of valley widening. Understanding how changes in sediment load and water discharge create such distinct morphological features is limited by a lack of robust understanding of the specific processes of bedrock valley widening. We present results from the first set of flume experiments specifically devoted to exploring the conditions necessary to create wide bedrock valleys and how bedrock valleys develop through time. We ran six experiments in a weak bedrock substrate representing valley widening in an easily erodible bedrock, with differing amounts of water discharge, sediment load and base level fall. We evaluated valley width, valley wall height, channel mobility, lateral and vertical bed incision and sediment cover on the bed to explore the conditions necessary for the development of wide bedrock valleys and better understand the processes that affect valley widening rates. The results of the experiments show that wide bedrock valleys developed slowly and only under long periods of high sediment conditions, while vertical incision occurred much faster and was easily induced under different forcing mechanisms. We found that high sediment flux, enough to cover the channel bed, was a necessary condition for substantial valley widening. However, sediment cover on the bed was not by itself a sufficient condition to create wide bedrock valleys in our experiments; other factors were also required, particularly mobile channels within the valleys and some channel curvature to induce lateral undercutting. The results from this set of experiments suggest that the creation of wide bedrock valleys has several necessary conditions that must be met, and the development of a wide bedrock valley can be disrupted by slight changes in one of these necessary conditions.

     
    more » « less
  2. Dendritic, i.e., tree-like, river networks are ubiquitous features on Earth’s landscapes; however, how and why river networks organize themselves into this form are incompletely understood. A branching pattern has been argued to be an optimal state. Therefore, we should expect models of river evolution to drastically reorganize (suboptimal) purely nondendritic networks into (more optimal) dendritic networks. To date, current physically based models of river basin evolution are incapable of achieving this result without substantial allogenic forcing. Here, we present a model that does indeed accomplish massive drainage reorganization. The key feature in our model is basin-wide lateral incision of bedrock channels. The addition of this submodel allows for channels to laterally migrate, which generates river capture events and drainage migration. An important factor in the model that dictates the rate and frequency of drainage network reorganization is the ratio of two parameters, the lateral and vertical rock erodibility constants. In addition, our model is unique from others because its simulations approach a dynamic steady state. At a dynamic steady state, drainage networks persistently reorganize instead of approaching a stable configuration. Our model results suggest that lateral bedrock incision processes can drive major drainage reorganization and explain apparent long-lived transience in landscapes on Earth.

     
    more » « less
  3. Abstract

    In this study, we present direct field measurements of modern lateral and vertical bedrock erosion during a 2‐year study period, and optically stimulated luminescence (OSL) ages of fluvial material capping a flat bedrock surface at Kings Creek located in northeast Kansas, USA. These data provide insight into rates and mechanisms of bedrock erosion and valley‐widening in a heterogeneously layered limestone‐shale landscape. Lateral bedrock erosion outpaced vertical incision during our 2‐year study period. Modern erosion rates, measured at erosion pins in limestone and shale bedrock reveal that shale erosion rate is a function of wetting and drying cycles, while limestone erosion rate is controlled by discharge and fracture spacing. Variability in fracture spacing amongst field sites controls the size of limestone block collapse into the stream, which either allowed continued lateral erosion following rapid detachment and transport of limestone blocks, or inhibited lateral erosion due to limestone blocks that protected the valley wall from further erosion. The OSL ages of fluvial material sourced from the strath terrace were older than any material previously dated at our study site and indicate that Kings Creek was actively aggrading and incising throughout the late Pleistocene. Coupling field measurements and observations with ages of fluvial terraces can be useful to investigate the timing and processes linked to how bedrock rivers erode laterally over time to form wide bedrock valleys.

     
    more » « less